Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Blood Adv ; 1(25): 2329-2342, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29296883

RESUMO

Adjuvants have a critical role for improving vaccine efficacy against many pathogens, including HIV. Here, using transcriptional RNA profiling and systems serology, we assessed how distinct innate pathways altered HIV-specific antibody responses in nonhuman primates (NHPs) using 8 clinically based adjuvants. NHPs were immunized with a glycoprotein 140 HIV envelope protein (Env) and insoluble aluminum salts (alum), MF59, or adjuvant nanoemulsion (ANE) coformulated with or without Toll-like receptor 4 (TLR4) and 7 agonists. These were compared with Env administered with polyinosinic-polycytidylic acid:poly-L-lysine, carboxymethylcellulose (pIC:LC) or immune-stimulating complexes. Addition of the TLR4 agonist to alum enhanced upregulation of a set of inflammatory genes, whereas the TLR7 agonist suppressed expression of alum-responsive inflammatory genes and enhanced upregulation of antiviral and interferon (IFN) genes. Moreover, coformulation of the TLR4 or 7 agonists with alum boosted Env-binding titers approximately threefold to 10-fold compared with alum alone, but remarkably did not alter gene expression or enhance antibody titers when formulated with ANE. The hierarchy of adjuvant potency was established after the second of 4 immunizations. In terms of antibody durability, antibody titers decreased ∼10-fold after the final immunization and then remained stable after 65 weeks for all adjuvants. Last, Env-specific Fc-domain glycan structures and a series of antibody effector functions were assessed by systems serology. Antiviral/IFN gene signatures correlated with Fc-receptor binding across all adjuvant groups. This study defines the potency and durability of 8 different clinically based adjuvants in NHPs and shows how specific innate pathways can alter qualitative aspects of Env antibody function.

2.
Sci Rep ; 6: 29063, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27439378

RESUMO

Although glycoconjugate vaccines are generally very efficacious, there is still a need to improve their efficacy, especially in eliciting a strong primary antibody response. We have recently described a new type of vaccine adjuvant based on a TLR7 agonist adsorbed to alum (Alum-TLR7), which is highly efficacious at enhancing immunogenicity of protein based vaccines. Since no adjuvant has been shown to potentiate the immune response to glycoconjugate vaccines in humans, we investigated if Alum-TLR7 is able to improve immunogenicity of this class of vaccines. We found that in a mouse model Alum-TLR7 greatly improved potency of a CRM197-MenC vaccine increasing anti-MenC antibody titers and serum bactericidal activity (SBA) against MenC compared to alum adjuvanted vaccine, especially with a low dose of antigen and already after a single immunization. Alum-TLR7 also drives antibody response towards Th1 isotypes. This adjuvant was also able to increase immunogenicity of all polysaccharides of a multicomponent glycoconjugate vaccine CRM197-MenACWY. Furthermore, we found that Alum-TLR7 increases anti-polysaccharide immune response even in the presence of a prior immune response against the carrier protein. Finally, we demonstrate that Alum-TLR7 adjuvant effect requires a functional TLR7. Taken together, our data support the use of Alum-TLR7 as adjuvant for glycoconjugate vaccines.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Anticorpos Antibacterianos/biossíntese , Glicoconjugados/administração & dosagem , Meningite Meningocócica/prevenção & controle , Vacinas Meningocócicas/administração & dosagem , Receptor 7 Toll-Like/administração & dosagem , Adjuvantes Imunológicos/química , Hidróxido de Alumínio/administração & dosagem , Hidróxido de Alumínio/química , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Feminino , Glicoconjugados/química , Humanos , Imunogenicidade da Vacina , Imunoglobulina G/biossíntese , Meningite Meningocócica/imunologia , Meningite Meningocócica/microbiologia , Vacinas Meningocócicas/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neisseria meningitidis/efeitos dos fármacos , Neisseria meningitidis/imunologia , Receptor 7 Toll-Like/química , Vacinação , Vacinas Conjugadas/administração & dosagem , Vacinas Conjugadas/biossíntese
3.
J Med Chem ; 59(12): 5868-78, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27270029

RESUMO

Small molecule Toll-like receptor 7 (TLR7) agonists have been used as vaccine adjuvants by enhancing innate immune activation to afford better adaptive response. Localized TLR7 agonists without systemic exposure can afford good adjuvanticity, suggesting peripheral innate activation (non-antigen-specific) is not required for immune priming. To enhance colocalization of antigen and adjuvant, benzonaphthyridine (BZN) TLR7 agonists are chemically modified with phosphonates to allow adsorption onto aluminum hydroxide (alum), a formulation commonly used in vaccines for antigen stabilization and injection site deposition. The adsorption process is facilitated by enhancing aqueous solubility of BZN analogs to avoid physical mixture of two insoluble particulates. These BZN-phosphonates are highly adsorbed onto alum, which significantly reduced systemic exposure and increased local retention post injection. This report demonstrates a novel approach in vaccine adjuvant design using phosphonate modification to afford adsorption of small molecule immune potentiator (SMIP) onto alum, thereby enhancing co-delivery with antigen.


Assuntos
Hidróxido de Alumínio/química , Naftiridinas/química , Naftiridinas/farmacologia , Organofosfonatos/química , Receptor 7 Toll-Like/agonistas , Adsorção , Animais , Relação Dose-Resposta a Droga , Feminino , Humanos , Concentração de Íons de Hidrogênio , Injeções Intramusculares , Leucócitos Mononucleares/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Naftiridinas/administração & dosagem , Organofosfonatos/administração & dosagem , Organofosfonatos/farmacologia , Baço/efeitos dos fármacos , Relação Estrutura-Atividade
4.
Hum Vaccin Immunother ; 11(8): 2038-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26024409

RESUMO

Cross-presentation is the process by which professional APCs load peptides from an extracellularly derived protein onto class I MHC molecules to trigger a CD8(+) T cell response. The ability to enhance this process is therefore relevant for the development of antitumor and antiviral vaccines. We investigated a new TLR2-based adjuvant, Small Molecule Immune Potentiator (SMIP) 2.1, for its ability to stimulate cross-presentation. Using OVA as model antigen, we demonstrated that a SMIP2.1-adjuvanted vaccine formulation induced a greater CD8(+) T cell response, in terms of proliferation, cytokine production and cytolytic activity, than a non-adjuvanted vaccine. Moreover, using an OVA-expressing tumor model, we showed that the CTLs induced by the SMIP2.1 formulated vaccine inhibits tumor growth in vivo. Using a BCR transgenic mouse model we found that B cells could cross-present the OVA antigen when stimulated with SMIP2.1. We also used a flow cytometry assay to detect activation of human CD8(+) T cells isolated from human PBMCs of cytomegalovirus-seropositive donors. Stimulation with SMIP2.1 increased the capacity of human APCs, pulsed in vitro with the pp65 CMV protein, to activate CMV-specific CD8(+) T cells. Therefore, vaccination with an exogenous antigen formulated with SMIP2.1 is a successful strategy for the induction of a cytotoxic T cell response along with antibody production.


Assuntos
Adjuvantes Imunológicos/metabolismo , Células Apresentadoras de Antígenos/imunologia , Apresentação Cruzada , Receptor 2 Toll-Like/agonistas , Animais , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Proliferação de Células , Citocinas/metabolismo , Citotoxicidade Imunológica , Modelos Animais de Doenças , Feminino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias Experimentais/terapia , Ovalbumina/imunologia
5.
Nat Commun ; 6: 6565, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25858157

RESUMO

Developing predictive animal models to assess how candidate vaccines and infection influence the ontogenies of Envelope (Env)-specific antibodies is critical for the development of an HIV vaccine. Here we use two nonhuman primate models to compare the roles of antigen persistence, diversity and innate immunity. We perform longitudinal analyses of HIV Env-specific B-cell receptor responses to SHIV(AD8) infection and Env protein vaccination with eight different adjuvants. A subset of the SHIV(AD8)-infected animals with higher viral loads and greater Env diversity show increased neutralization associated with increasing somatic hypermutation (SHM) levels over time. The use of adjuvants results in increased ELISA titres but does not affect the mean SHM levels or CDR H3 lengths. Our study shows how the ontogeny of Env-specific B cells can be tracked, and provides insights into the requirements for developing neutralizing antibodies that should facilitate translation to human vaccine studies.


Assuntos
Vacinas contra a AIDS/imunologia , Adjuvantes Imunológicos , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Imunoglobulinas/imunologia , RNA Mensageiro/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , Sequência de Bases , Infecções por HIV/imunologia , Imunoglobulinas/genética , Infecções por Lentivirus/imunologia , Infecções por Lentivirus/prevenção & controle , Lentivirus de Primatas/imunologia , Estudos Longitudinais , Macaca mulatta , Dados de Sequência Molecular , RNA Viral/análise , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Carga Viral
6.
Proc Natl Acad Sci U S A ; 112(12): 3680-5, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25775551

RESUMO

Both active and passive immunization strategies against Staphylococcus aureus have thus far failed to show efficacy in humans. With the attempt to develop an effective S. aureus vaccine, we selected five conserved antigens known to have different roles in S. aureus pathogenesis. They include the secreted factors α-hemolysin (Hla), ess extracellular A (EsxA), and ess extracellular B (EsxB) and the two surface proteins ferric hydroxamate uptake D2 and conserved staphylococcal antigen 1A. The combined vaccine antigens formulated with aluminum hydroxide induced antibodies with opsonophagocytic and functional activities and provided consistent protection in four mouse models when challenged with a panel of epidemiologically relevant S. aureus strains. The importance of antibodies in protection was demonstrated by passive transfer experiments. Furthermore, when formulated with a toll-like receptor 7-dependent (TLR7) agonist recently designed and developed in our laboratories (SMIP.7-10) adsorbed to alum, the five antigens provided close to 100% protection against four different staphylococcal strains. The new formulation induced not only high antibody titers but also a Th1 skewed immune response as judged by antibody isotype and cytokine profiles. In addition, low frequencies of IL-17-secreting T cells were also observed. Altogether, our data demonstrate that the rational selection of mixtures of conserved antigens combined with Th1/Th17 adjuvants can lead to promising vaccine formulations against S. aureus.


Assuntos
Adjuvantes Imunológicos/farmacologia , Infecções Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/química , Receptor 7 Toll-Like/química , Abscesso/patologia , Imunidade Adaptativa , Animais , Antibacterianos/química , Anticorpos Antibacterianos/imunologia , Antígenos/imunologia , Humanos , Camundongos , Modelos Animais , Infecções Estafilocócicas/imunologia , Staphylococcus aureus , Células Th1/imunologia
7.
Sci Transl Med ; 6(268): 268ra179, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25540326

RESUMO

Inhibition of the mammalian target of rapamycin (mTOR) pathway extends life span in all species studied to date, and in mice delays the onset of age-related diseases and comorbidities. However, it is unknown if mTOR inhibition affects aging or its consequences in humans. To begin to assess the effects of mTOR inhibition on human aging-related conditions, we evaluated whether the mTOR inhibitor RAD001 ameliorated immunosenescence (the decline in immune function during aging) in elderly volunteers, as assessed by their response to influenza vaccination. RAD001 enhanced the response to the influenza vaccine by about 20% at doses that were relatively well tolerated. RAD001 also reduced the percentage of CD4 and CD8 T lymphocytes expressing the programmed death-1 (PD-1) receptor, which inhibits T cell signaling and is more highly expressed with age. These results raise the possibility that mTOR inhibition may have beneficial effects on immunosenescence in the elderly.


Assuntos
Imunidade/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Idoso , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Estudos de Coortes , Everolimo , Humanos , Vacinas contra Influenza/imunologia , Placebos , Receptor de Morte Celular Programada 1/metabolismo , Estações do Ano , Sirolimo/análogos & derivados , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Vacinação
8.
Sci Transl Med ; 6(263): 263ra160, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25411473

RESUMO

Adjuvants increase vaccine potency largely by activating innate immunity and promoting inflammation. Limiting the side effects of this inflammation is a major hurdle for adjuvant use in vaccines for humans. It has been difficult to improve on adjuvant safety because of a poor understanding of adjuvant mechanism and the empirical nature of adjuvant discovery and development historically. We describe new principles for the rational optimization of small-molecule immune potentiators (SMIPs) targeting Toll-like receptor 7 as adjuvants with a predicted increase in their therapeutic indices. Unlike traditional drugs, SMIP-based adjuvants need to have limited bioavailability and remain localized for optimal efficacy. These features also lead to temporally and spatially restricted inflammation that should decrease side effects. Through medicinal and formulation chemistry and extensive immunopharmacology, we show that in vivo potency can be increased with little to no systemic exposure, localized innate immune activation and short in vivo residence times of SMIP-based adjuvants. This work provides a systematic and generalizable approach to engineering small molecules for use as vaccine adjuvants.


Assuntos
Adjuvantes Imunológicos/farmacologia , Desenho de Fármacos , Vacinas/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacocinética , Disponibilidade Biológica
9.
Mol Ther ; 22(12): 2118-2129, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25027661

RESUMO

Nucleic acid-based vaccines such as viral vectors, plasmid DNA, and mRNA are being developed as a means to address a number of unmet medical needs that current vaccine technologies have been unable to address. Here, we describe a cationic nanoemulsion (CNE) delivery system developed to deliver a self-amplifying mRNA vaccine. This nonviral delivery system is based on Novartis's proprietary adjuvant MF59, which has an established clinical safety profile and is well tolerated in children, adults, and the elderly. We show that nonviral delivery of a 9 kb self-amplifying mRNA elicits potent immune responses in mice, rats, rabbits, and nonhuman primates comparable to a viral delivery technology, and demonstrate that, relatively low doses (75 µg) induce antibody and T-cell responses in primates. We also show the CNE-delivered self-amplifying mRNA enhances the local immune environment through recruitment of immune cells similar to an MF59 adjuvanted subunit vaccine. Lastly, we show that the site of protein expression within the muscle and magnitude of protein expression is similar to a viral vector. Given the demonstration that self-amplifying mRNA delivered using a CNE is well tolerated and immunogenic in a variety of animal models, we are optimistic about the prospects for this technology.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Emulsões/administração & dosagem , Imunidade Celular , RNA Mensageiro/imunologia , RNA Viral/imunologia , Vacinas de DNA/administração & dosagem , Animais , Cátions , Emulsões/química , Feminino , Macaca mulatta , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , Ratos
10.
Antivir Chem Chemother ; 23(5): 189-96, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23232327

RESUMO

BACKGROUND: Development of more effective therapies for genital herpes simplex virus type-2 (HSV-2) infections remains a priority. The toll-like receptors (TLR) are attractive targets for the immunomodulation of primary and recurrent genital herpes infection. The guinea pig model of genital HSV-2 disease was therefore used to evaluate the efficacy of a new TLR-7 agonist, SMIP-7.7. METHODS: The effects of SMIP-7.7 at concentrations between 0.90% and 0.09% were compared to the vehicle control or Aldara(®) (3M Health Care Limited, Northridge, CA, USA) as treatment for genital HSV-2 infections. Following intravaginal inoculation of Hartley guinea pigs with 10(6) pfu HSV-2 (MS strain), animals were treated intravaginally beginning at 36 h post-infection. Animals were evaluated for acute disease, acute virus replication, recurrent disease and shedding, as well as infection of the dorsal root ganglia. RESULTS: Treatment with SMIP-7.7 significantly decreased mean total lesion scores during primary infection (all doses, P<0.01 compared with vehicle control, and similar to Aldara(®)). Vaginal virus titres were reduced in treated animals compared with vehicle control (P<0.001 for each treatment versus vehicle control on day 4). Treatment with SMIP-7.7 also significantly decreased the number of recurrent lesion days, the number of days with recurrent virus shedding and the infection of the dorsal root ganglia compared to the vehicle control, and was similar to Aldara(®). As opposed to Aldara(®), SMIP-7.7 did not induce fever or weight loss during treatment. CONCLUSIONS: SMIP-7.7 improves the outcome of primary and recurrent HSV-2 disease comparable to Aldara(®) but without some of the side effects associated with Aldara(®).


Assuntos
Antivirais/farmacologia , Modelos Animais de Doenças , Herpes Genital/prevenção & controle , Herpesvirus Humano 2/imunologia , Receptor 7 Toll-Like/agonistas , Administração Tópica , Animais , Antivirais/administração & dosagem , Cobaias , Herpes Genital/tratamento farmacológico , Herpes Genital/imunologia , Herpes Genital/virologia , Herpesvirus Humano 2/isolamento & purificação , Receptor 7 Toll-Like/imunologia
11.
Vaccine ; 31(2): 306-12, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23153444

RESUMO

In the 1960s, infant immunization with a formalin-inactivated respiratory syncytial virus (FI-RSV) vaccine candidate caused enhanced respiratory disease (ERD) following natural RSV infection. Because of this tragedy, intensive effort has been made to understand the root causes of how the FI-RSV vaccine induced a pathogenic response to subsequent RSV infection in vaccinees. A well-established cotton rat model of FI-RSV vaccine-enhanced disease has been used by numerous researchers to study the mechanisms of ERD. Here, we have dissected the model and found it to have significant limitations for understanding FI-RSV ERD. This view is shaped by our finding that a major driver of lung pathology is cell-culture contaminants, although FI-RSV immunization and RSV challenge serve as co-factors to exacerbate disease. Specifically, non-viral products from the vaccine and challenge preparations that are devoid of RSV give rise to alveolitis, which is considered a hallmark of FI-RSV ERD in the cotton rat model. Although FI-RSV immunization and RSV challenge promote more severe alveolitis, they also drive stronger cellular immune responses to non-viral antigens. The severity of alveolitis is associated with T cells specific for non-viral antigens more than with T cells specific for RSV. These results highlight the limitations of the cotton rat ERD model and the need for an improved animal model to evaluate the safety of RSV vaccine candidates.


Assuntos
Antígenos/imunologia , Pneumopatias/imunologia , Pneumopatias/prevenção & controle , Infecções por Vírus Respiratório Sincicial/imunologia , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vacinas/imunologia , Animais , Anticorpos/imunologia , Feminino , Imunidade Celular/imunologia , Imunização/métodos , Pulmão/imunologia , Pulmão/patologia , Ratos , Sigmodontinae
12.
Proc Natl Acad Sci U S A ; 109(36): 14604-9, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22908294

RESUMO

Despite more than two decades of research and development on nucleic acid vaccines, there is still no commercial product for human use. Taking advantage of the recent innovations in systemic delivery of short interfering RNA (siRNA) using lipid nanoparticles (LNPs), we developed a self-amplifying RNA vaccine. Here we show that nonviral delivery of a 9-kb self-amplifying RNA encapsulated within an LNP substantially increased immunogenicity compared with delivery of unformulated RNA. This unique vaccine technology was found to elicit broad, potent, and protective immune responses, that were comparable to a viral delivery technology, but without the inherent limitations of viral vectors. Given the many positive attributes of nucleic acid vaccines, our results suggest that a comprehensive evaluation of nonviral technologies to deliver self-amplifying RNA vaccines is warranted.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/administração & dosagem , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Alphavirus/genética , Análise de Variância , Animais , Eletroforese em Gel de Ágar , Escherichia coli , Feminino , Imunofluorescência , Humanos , Lipídeos/química , Nanopartículas/química , RNA Interferente Pequeno/química , Ratos , Estatísticas não Paramétricas
13.
Blood ; 117(21): 5683-91, 2011 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-21487111

RESUMO

TLR7 and TLR8 are intracellular sensors activated by single-stranded RNA species generated during viral infections. Various synthetic small molecules can also activate TLR7 or TLR8 or both through an unknown mechanism. Notably, direct interaction between small molecules and TLR7 or TLR8 has never been shown. To shed light on how small molecule agonists target TLRs, we labeled 2 imidazoquinolines, resiquimod and imiquimod, and one adenine-based compound, SM360320, with 2 different fluorophores [5(6) carboxytetramethylrhodamine and Alexa Fluor 488] and monitored their intracellular localization in human plasmacytoid dendritic cells (pDCs). All fluorescent compounds induced the production of IFN-α, TNF-α, and IL-6 and the up-regulation of CD80 and CD86 by pDCs showing they retained TLR7-stimulating activity. Confocal imaging of pDCs showed that, similar to CpG-B, all compounds concentrated in the MHC class II loading compartment (MIIC), identified as lysosome-associated membrane protein 1(+), CD63, and HLA-DR(+) endosomes. Treatment of pDCs with bafilomycin A, an antagonist of the vacuolar-type proton ATPase controlling endosomal acidification, prevented the accumulation of small molecule TLR7 agonists, but not of CpG-B, in the MIIC. These results indicate that a pH-driven concentration of small molecule TLR7 agonists in the MIIC is required for pDC activation.


Assuntos
Adenina/análogos & derivados , Aminoquinolinas/farmacocinética , Células Dendríticas/metabolismo , Corantes Fluorescentes , Genes MHC da Classe II/fisiologia , Imidazóis/farmacocinética , Receptor 7 Toll-Like/agonistas , Adenina/farmacocinética , Antineoplásicos/farmacocinética , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Imunofluorescência , Humanos , Imiquimode , Macrolídeos/farmacologia , ATPases Translocadoras de Prótons/antagonistas & inibidores , Quinolinas/química , Quinolinas/farmacocinética , Receptor 7 Toll-Like/metabolismo
14.
J Immunol ; 186(7): 4213-22, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21383246

RESUMO

TLR7 is the mammalian receptor for ssRNA and some nucleotide-like small molecules. We have generated a mouse by N-nitrose-N'-ethyl urea mutagenesis in which threonine 68 of TLR7 was substituted with isoleucine. Cells bearing this mutant TLR7 lost the sensitivity to the small-molecule TLR7 agonist resiquimod, hence the name TLR7(rsq1). In this work, we report the characterization of this mutant protein. Similar to the wild-type counterpart, TLR7(rsq1) localizes to the endoplasmic reticulum and is expressed at normal levels in both primary cells and reconstituted 293T cells. In addition to small-molecule TLR7 agonists, TLR7(rsq1) fails to be activated by ssRNA. Whole-transcriptome analysis demonstrates that TLR7 is the exclusive and indispensable receptor for both classes of ligands, consistent with the fact that both ligands induce highly similar transcriptional signatures in TLR7(wt/wt) splenocytes. Thus, TLR7(rsq1) is a bona fide phenocopy of the TLR7 null mouse. Because TLR7(rsq1) binds to ssRNA, our studies imply that the N-terminal portion of TLR7 triggers a yet to be identified event on TLR7. TLR7(rsq1) mice might represent a valuable tool to help elucidate novel aspects of TLR7 biology.


Assuntos
Mutação Puntual/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Células HEK293 , Humanos , Imidazóis/farmacologia , Ligantes , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Ligação Proteica/imunologia , Transdução de Sinais/efeitos dos fármacos , Receptor 7 Toll-Like/deficiência
15.
Curr Opin Immunol ; 22(3): 411-6, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20466528

RESUMO

Despite their obvious benefits, decades of research and hundreds of pre-clinical candidates, only a handful of adjuvants are approved for prophylactic vaccination of humans. The slow pace of development is due to a number of knowledge gaps, the most important of which is the complexity involved in designing adjuvants that are both potent and well tolerated. Recent advances in our understanding of innate immunity have led to the identification of immune pathways and adjuvant formulations more suitable for clinical advancement. One area of particular interest is the discovery of agonists that target the toll-like receptors. This review highlights recent progress of clinically approved vaccine adjuvants and identifies potential novel adjuvants that can broaden the development of new vaccines against infectious diseases.


Assuntos
Adjuvantes Imunológicos , Controle de Doenças Transmissíveis , Doenças Transmissíveis/imunologia , Doenças Transmissíveis/terapia , Vacinas/imunologia , Animais , Doenças Transmissíveis/etiologia , Humanos , Camundongos
16.
J Hepatol ; 52(2): 183-90, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20015567

RESUMO

BACKGROUND & AIMS: Hepatitis C virus (HCV) is remarkably successful in establishing persistent infections due to its ability to evade host immune responses through a combination of mechanisms including modulation of interferon (IFN) signalling in infected cells, interference with effector cell function of the immune system and continual viral genetic variation. We have previously demonstrated that natural killer (NK) cells can be inhibited in vitro by recombinant HCV glycoprotein E2 via cross-linking of CD81, a cellular co-receptor for the virus. METHODS: Taking advantage of the recently established tissue-culture system for HCV, we have studied the effects of CD81 engagement by the HCV envelope glycoprotein E2 when the protein is part of complete, infectious viral particles. Specifically, we asked whether exposure to HCV viral particles (HCVcc) affects activation of NK cells and whether altered NK cell activation, in turn, impacts on HCV infectivity. RESULTS: We found that immobilized HCVcc, unlike soluble HCVcc, inhibited IFN-gamma production by interleukin (IL)-12 activated NK cells, and that this effect was mediated by engagement of cellular CD81 by HCV-virion displayed E2. In contrast, NK-production of IL-8 was increased in the presence of HCV. The cytokines produced by IL-12 activated NK cells strongly reduced the establishment of productive HCV infection. Importantly, NK-cell derived cytokines secreted in the presence of HCVcc showed a diminished antiviral effect that correlated with IFN-gamma reduction, while IL-8 concentrations had no impact on HCV infectivity. CONCLUSIONS: Exposure to HCVcc modulates the pattern of cytokines produced by NK cells, leading to reduced antiviral activity.


Assuntos
Citocinas/biossíntese , Hepacivirus/imunologia , Hepacivirus/patogenicidade , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/virologia , Antígenos CD/metabolismo , Células Cultivadas , Reagentes de Ligações Cruzadas , Humanos , Tolerância Imunológica , Interferon gama/antagonistas & inibidores , Interferon gama/biossíntese , Interleucina-12/biossíntese , Interleucina-8/antagonistas & inibidores , Interleucina-8/biossíntese , Interleucina-8/farmacologia , Ativação Linfocitária , Testes de Neutralização , Proteínas Recombinantes/farmacologia , Transdução de Sinais/imunologia , Tetraspanina 28 , Proteínas do Envelope Viral/imunologia
17.
Blood ; 113(18): 4232-9, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19176317

RESUMO

Dendritic cell (DC) populations play unique and essential roles in the detection of pathogens, but information on how different DC types work together is limited. In this study, 2 major DC populations of human blood, myeloid (mDCs) and plasmacytoid (pDCs), were cultured alone or together in the presence of pathogens or their products. We show that pDCs do not respond to whole bacteria when cultured alone, but mature in the presence of mDCs. Using purified stimuli, we dissect this cross-talk and demonstrate that mDCs and pDCs activate each other in response to specific induction of only one of the cell types. When stimuli for one or both populations are limited, they synergize to reach optimal activation. The cross-talk is limited to enhanced antigen presentation by the nonresponsive population with no detectable changes in the quantity and range of cytokines produced. We propose that each population can be a follower or leader in immune responses against pathogen infections, depending on their ability to respond to infectious agents. In addition, our results indicate that pDCs play a secondary role to induce immunity against human bacterial infections, which has implications for more efficient targeting of DC populations with improved vaccines and therapeutics.


Assuntos
Bactérias/patogenicidade , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Células Mieloides/imunologia , Células Mieloides/microbiologia , Técnicas de Cultura de Células , Citocinas/metabolismo , Citometria de Fluxo , Humanos , Rim/metabolismo , Luciferases/metabolismo , Ativação Linfocitária/imunologia , Fagocitose , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/imunologia , Linfócitos T/metabolismo , Receptores Toll-Like/genética , Transfecção
18.
J Immunol ; 178(5): 2688-98, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17312110

RESUMO

At an early phase of viral infection, contact and cooperation between dendritic cells (DCs) and NK cells activates innate immunity, and also influences recruitment, when needed, of adaptive immunity. Influenza, an adaptable fast-evolving virus, annually causes acute, widespread infections that challenge the innate and adaptive immunity of humanity. In this study, we dissect and define the molecular mechanisms by which influenza-infected, human DCs activate resting, autologous NK cells. Three events in NK cell activation showed different requirements for soluble mediators made by infected DCs and for signals arising from contact with infected DCs. IFN-alpha was mainly responsible for enhanced NK cytolysis and also important for CD69 up-regulation, whereas IL-12 was necessary for enhancing IFN-gamma production. Increased CD69 expression and IFN-gamma production, but not increased cytolysis, required recognition of influenza-infected DCs by two NK cell receptors: NKG2D and NKp46. Abs specific for these receptors or their known ligands (UL16-binding proteins 1-3 class I-like molecules for NKG2D and influenza hemagglutinin for NKp46) inhibited CD69 expression and IFN-gamma production. Activation of NK cells by influenza-infected DCs and polyinosinic:polycytidylic acid (poly(I:C))-treated DCs was distinguished. Poly(I:C)-treated DCs did not express the UL16-binding protein 3 ligand for NKG2D, and in the absence of the influenza hemagglutinin there was no involvement of NKp46.


Assuntos
Células Dendríticas/imunologia , Influenza Humana/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Glicoproteínas de Membrana/imunologia , Receptores Imunológicos/imunologia , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Proteínas de Transporte/imunologia , Células Dendríticas/virologia , Hemaglutininas/imunologia , Humanos , Imunidade Inata , Lectinas Tipo C , Ativação Linfocitária/efeitos dos fármacos , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Receptor 1 Desencadeador da Citotoxicidade Natural , Poli I-C/imunologia , Poli I-C/farmacologia , Receptores de Células Matadoras Naturais , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia , Proteínas Virais/imunologia
19.
Eur J Immunol ; 36(4): 919-29, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16552713

RESUMO

The hepatitis C virus (HCV) binds to human cells through the interaction of its envelope glycoprotein E2 with the tetraspanin CD81. We have previously reported that engagement of CD81 has opposite effects on T and NK cell function, as it enhances T cell receptor-mediated T cell activation and inhibits CD16- or IL-12-mediated NK cell activation. We further investigated this dichotomy and found that another tetraspanin, CD82, induces the same opposing effects on human primary T and NK cells. Activation by other unrelated stimuli such as NKG2D- and beta-1 integrin is also reduced by CD81 ligation on NK cells. CD81 engagement by monoclonal antibody or HCV-E2 enhances zeta and Erk phosphorylation in T cells and reduces them in NK cells, reflecting the opposite functional outcomes. CD81 engagement induces dramatic morphological changes and local F-actin accumulation in both NK and T cells, indicating rearrangement of the actin cytoskeleton. Pharmacological inhibition of actin polymerization reduces T cell activation, whereas it greatly enhances NK cell activation. Importantly, treatment with actin blockers abolishes the inhibitory effect of CD81 ligation on NK cells. We propose that tetraspanin engagement leads to comparable cytoskeleton reorganization in T and NK cells, which in turn results in opposite functional outcomes.


Assuntos
Antígenos CD/metabolismo , Citoesqueleto/metabolismo , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Actinas/efeitos dos fármacos , Actinas/metabolismo , Western Blotting , Reagentes de Ligações Cruzadas/farmacologia , Citocalasina D/farmacologia , Citoesqueleto/química , Citoesqueleto/efeitos dos fármacos , Humanos , Proteína Kangai-1/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Inibidores da Síntese de Ácido Nucleico/farmacologia , Linfócitos T/efeitos dos fármacos , Tetraspanina 28
20.
Nat Med ; 11(4 Suppl): S63-8, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15812492

RESUMO

Despite two centuries of vaccine use, only a few adjuvants and delivery systems are licensed for human use. This is partly because traditional vaccines based on attenuated live organisms already have them--their invasiveness provides efficient delivery to antigen-presenting cells and various naturally occurring components of the pathogens stimulate the innate immune system. But consideration of these immune potentiators and delivery systems has become important to the development of new subunit vaccines consisting of isolated antigens. Here we consider rational approaches to the discovery and development of immunostimulatory compounds and vaccine formulations that target innate immune responses.


Assuntos
Adjuvantes Imunológicos , Imunidade Inata , Vacinas , Sistemas de Liberação de Medicamentos , Humanos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...